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Abstract. In this paper an interactive procedure for solving multi-objective pro-
gramming problem has been developed. Algorithm for the convex case is based on
some elements of the theory of convex programming irrespective of any constraint
qualification. Sensitivity analysis of the convex program by marginal value formula
from the input optimization provides necessary information to help the user in the
dialog part of the procedure.
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1. INTRODUCTION

Let us consider multi-objective program

min{f’(z), j € J}
MOP 8.t
:€Z={z:9%(2) L0, k€ K}

where f/ : R® — R, j € J = {l,...,q}, ¢ > 2 are objective functions and
gc :R* - R, k€ K ={1,...,r} are constraint functions. Suppose that the
feasible set Z C R™ is nonempty. The multi-objective function will be denoted by
f(z) = (fY(2),...,f1(z)), ie. f:R® — R?. When all functions f?, j € J and g*,
k € K are convex, such program is termed a multi-objective convex program.

The solutions of a multi-objective program are referred to as Pareto-optimal
(noninferior, efficient or nondominated) solutions.

DEFINITION 1. A point z € Z is a Pareto-minimum of MOP if there is no other
z € Z such that f?(z) < f/(z*), 7 € J with at least one strict inequality “<”.

Since a Pareto-optima set usually contains many solutions that are nonequiva-
lent and noncomparable, the question is how to choose the final solution from this
set. Any solution that satisfactorily terminates the decision process is called a final
solution. In the interactive approach the user actively participates in the solution
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process by supplying preference information through the dialog (see e.g. [1], [3],
[7], [8], [11]). The paper is organized as follows: An interactive method for solving
multi-objective program is proposed in Section 2. This rather general procedure is
based on the idea to achieve improvement of some objectives by relaxing the others.
Modifications of the algorithm for a convex case are described in Section 3. The
choice of objectives for relaxation is made by using properties of the minimal index
set of active constraints. The relaxation levels are assigned by using information
provided by the marginal value formula from input optimization. The method is

illustrated by a numerical example in Section 4.

2. DESCRIPTION OF THE INTERACTIVE METHOD

We develop an interactive method that explores the Pareto-optima set in search
of the acceptable solution. The algorithm below does not require convexity neither
continuity assumption.

INITIALIZATION. Choose an arbitrary feasible point 2° € Z. Set y = 2%, h = 1.
The point y will be termed referential point.

STEP 1. Calculating Pareto-minimum.

Solve
min Y f7(z)
j€J
Py, s.t. |
P Fly), JeJ
Z € Z.

Then an optimal solution 2* of P, is a Pareto-minimum of MOP (by Soland’s
characterization of Pareto-optimality [10]).

If 2* = y, then the referential point y is a Pareto-minimum; otherwise, the
solution Z* # y thus obtained is a Pareto-minimum “better” than the referential

point y. Set z* = 27,

STEP 2. Interaction with the user

~ Pareto-minimum 2* and the corresponding objective vector f(z*) = (f(z"),
..., f1(z")) are offered to the user. If one is satisfied with all objective values
f?(z*), j € J, then z* is the solution for “realization”. Stop.

If the user does not accept the solution offered, than one has to classify ob-
Jectives into two groups I and R, where I is an index subset of objectives that the
user wants to improve further, and K — an index subset of objectives that the user
18 willing to relax. Here /TUR=J, INR=@.

- Moreover, the user has to assign amounts pi >0, J € R to relax the values
f7(2"), j € R in exchange for an improvement of some values fi(z*), iel.
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STEP 3. Calculating a new referential point
Solve

min - f(z)

() el
P.(p) s.t.
f) < fi(=), i€l
FP() S FP@E)+p,  JER
€ 7.

Here min ;) means minimizing at the variable z for fixed parameter values p;, j € R.
Let §* be an optimal solution of the program P.(p), where p = (p;), j € R is the
given vector. Set y = ¢® h = h+1 and go to Step 1. A point §”* is not necessarily
Pareto-minimum of MOP.

NOTE. The weighted sum of objectives used in the algorithm can be replaced by a
strictly increasing function of objectives.

The proposed algorithm is along a same line as STEM [1] and related methods
based on the relaxation of objectives [3], [7], [8). Unfortunately, the methods
that attempt to improve some objectives usually do not give any guarantees of the
improvement required. It is necessary to perform the complete optimization step
in order to see if user’s wishes are realistic (see [5]).

The important help to the user in expressing preference information would be
to know in advance the behavior of objectives at the obtained Pareto-optimum.
This kind of information is difficult to obtain in general nonlinear case, so we will
consider this problem for convex multi-objective programs.

3. ALGORITHM FOR A CONVEX CASE

We study modification of the algorithm from the previous section applied to
the search for satisfactory solution of the convex MOP.

Pareto-optimum in Step 1 and a new referential point from the Step 3 are
obtained by solving convex programs P, and P,(p) respectively. Slater’s condition
is not necessarily satisfied for such programs, so Kuhn-Tucker optimality conditions
and the corresponding numerical methods are not applicable.

That is why we study how some elements of the “BBZ” theory of convex
programming [2] irrespective of any constraint qualification can be used in the
interactive procedure.

On the intersection of F, = {z : f/(z) < f/(y), j € J} and the feasible set Z,
define the index set of always active objectives and constraints:

Jr={i€J:zeFnZ= f(z)= f(y))

and

Kf:{keK:zefyﬂZ=>g"(z)=0}.
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We introduce also the sets:
Fr={z:f(2)=F(y), i€}
and .
Z, = {z:¢"(2) =0,k € K;}.

First we remind of constructive characterization of Pareto-optimality [5] that is a
generalization of the result for unconstrained convex case from [2].

THEOREM 1. A point y € Z is a Parelo-minimum of conver MOP if and only if
Jo =J.
v

The sets defined above are used in the algorithmn as follows: At the point y
the sets J;° and K are calculated. If J& = J, then y is a Pareto-mmimum. Set

2" =y
If J; # J, then Pareto-minimum z*, “better” than y, has to be found. The
feasible set F, N Z of the program P, is transformed as:

FoNZ={z:f1(z) S i€J\J id"(z) S0 ke K\K;}NF NZ;.

Such modified constraints satisfy Slater’s condition relative to 7~ N Z7. Program
Py can be solved now by any method, including those based on Kuhn-Tucker con-
dition. Optimal solution z* of Py is a Pareto-optimum of MOP.

On the basis of Pareto-minimum z* and corresponding f’(z*), j € J, the user
has to classify objectives from J into two groups I and R. Very often further
improvements of all objectives from I are not possible for any amount of relaxation
of objectives from R, no matter how great it is. An analysis of the behaviour of
objectives in the neighbourhood of the current z* for the chosen pair (I, R) can be
performed by:

IF={iel:ze FInzZ = fi(z) = fi(z*))
where
Fl={z: ff2) < Fl2*)ie I)
The set I- C I contains indices of those objectives which remain unchangeable,
i.e. equal to f*(z*), i € I7 for any amount of relaxation of objectives from R.

For different set pairs (I, R) the index sets IT and IS = I'\ I~ are calculated.
Useful advice in choosing the pairs (I, R) can be to start with set R of minimal
cardinality because the user attempts to improve as many objectives as possible.
There are at most 27 — 2 possible choices because I can be any subset of J, but not
an empty set or the set J itself.

If I7 = I, then no objective value f*(z*), i € I can be improved. If I-=9
then all f'(z* ) 1 € I can be improved simultaneously.

The user classifies objectives on the basis of objective values fi(z*), j € J
and information on the sets /7. If the improvements cannot possibly be achieved
for any pair (I, R), then there is no better solution, with the given preference
structure, than the current Pareto-solution z*. Stop. On the other hand. if some of
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the required improvements are achievable for the pair (I, R), then the user assigns
amounts p; > 0, J € R to increase objectives from R.

We introduce notation: Fi(p) = {z : fi(z) < fI(z*) + pj,j € R}, and
KSi={k€K:z€ F.(p)NZ = g*¥(z) = 0}. The feasible set of the program P,(p)

18 rewritten as:
Fp)=F.NFHp)NZ = {2 :f(2) S ("), i € I\ IT;
fi(z) £ f1(z*) + pj, ] € R;
g (z) <0,k e K\KZ}N(FH=nZZ,

where (F1)® = {2 : f(z) = [i(2*),i € [F).
Then Slater’s condition, relative to the set (F/)™ N ZZ, is satisfied for such
modified constraints of P,(p).

With the given (I, R), p; > 0, j € R and modified constraint set, go to Step 3
of the algorithm and find new referential point y by solving convex program P.(p).

NoTE. Modification of the feasible set, as well as the given characterization of
Pareto-optimality have practical sense only if the objects of convex analysis used
here can be calculated. Algorithms from [6], [14] are developed for the class of
programs with faithfully convex functions (see [9]).

Improvement amounts of particular objectives from I depend directly on the
given p; > 0, j € R. The problem of setting the relaxation levels is not studied
systematically in the literature except when one objective is relaxed. The new
marginal value formula recently proposed [12] offers mathematical tool for sensi-
tivity analysis even in case of relaxing many objectives. Information resulting from
sensitivity analysis serves as a support to the user in assigning p; > 0, j € R.

The marginal value formula is stated for the convex model
0
min f(z, )
P(9) 8.t.
g*(z,0) <0, ke K=A{1,...,r}

where z € R™ is a decision variable, § € RP is a parameter and f, g* : R® x RP — R,
k € K are continuous functions and f(-,4), ¢¥(-,8) : R®* — R, k € K are convex
for every 6.

At every 6, denote by X(8) = {z : ¢*(z,0) < 0,k € K} the feasible set,
X (8) = {2(0)} is the set of optimal solutions and f(8) = f(£(6),0) is the optimal
value.

In many applications it is desirable the continuity of this triple around some
f§ = *. Region of stability at 6* is the set S C R™ where point-to-set mapping
X : 6 — X(0) is lower semicontinuous at #* (in Hogan’s sense [4]). Perturbations
of § from 6* over the region S guarantee upper semicontinuity of the mapping

X : 0 — X(0) and continuity of f, provided that X(6*) # @ and bounded (see
[15]).-
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The problem of calculating the marginal value
. f(0) - f()
sestloe 0= 6]

on a region of stability has been studied in [12], (15], [16]. The formula from [12]
is stated for convex model in terms of the special Lagrange function

Li(z,w;0) = f(z,0)+ D wg*(z,0)
ke K\K=(8°)

on every region of stability where point-to-set mapping X7 : § — X (6), defined
by X= = {z : g*(z,0) <0,k € K=(6%)}, is lower semicontinuous.

THEOREM 2 ([12]). Consider the convez model P(8) with differentiable functions al
some 0°, with X (0*) # @ and bounded. Lel S be an arbitrary region of stability al
0* where the mapping X= is lower semicontinuous at 8*. Suppose that the saddle
point (£(6%),4x(6%) : k € K\ K=(8")) is unique and that the gradients V f(z,0),
Vgk(z,0), k € K\K=(8") are continuous at (2(6%),8*). Then for every path6 € S,
0 — 0™ and 2(0) — z(0%), for which the limais

g —8° : z(0) — z(6*)

= | =
= 0ed® T *™ 77 pesise [0

exist, the marginal value 1s

- f0) - () _ e
aesl,uén-.o' 16 — 6~|] = Vo L3(2(6%),4(6%);8%) -1

+ VoLE(2(67), u(6");6") - 2.

The formula contains the term with a limit z — the directional derivative of
the optimal solutions. The conditions for existence of this limit are considered in

[12] and [13].
Let us consider now convex MOP at some Pareto-minimum 2*. Suppose that

the classification (I, R) of objectives based on f7(z*), j € J is given. Then P.(p)
(from Step 3) can be considered as a convex model with a parameter vector p = (p;),

JER.
Every p determines the feasible set
Fap)NZ={z: fi(z) S f(2"),i€ L, f(z) < (") + pj,i ER}N Z,

the set of optimal solutions {Z(p)} and the optimal value @(p) = @(i(p)) =

e F(3(p)) of the model P.(p)
Similarly as before, let

IF(p)={jeJ z€F(p)NZ = fl(z) = f(z"))
be the index set of active objectives on F.(p)N Z, and
KZ(p)={k€K:z€F(p)NZ = g*(2) =0}
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the index set of active constraints on F.(p)N 2.

Consider model P,(p) for p = p° = 0. Then JZ(p%) = J, by the characteri-
zation of Pareto-minimum z* (Theorem 1). The value @(p°) = 5., f/(2(p°)) =
2. stus f'(z") is obviously improved for parameter perturbations over S(p°) = {p
py > pJ = 0,7 € R} where S(p°) is the region of stability for model P,(p) at p = Fod

Since J \ J7(p%) = @, the restrictive Lagrange function at p’
Li(zpmip)= LI+ 2 me'(2) = L5 (2 )

i€l k€ K\k=(p%)

does not depend on p. Now Theorem 2 applied to the model P.(p) at p? yield:

COROLLARY 1. Consider the convexr model P.(p) with differentiable funclions at
p°. Suppose that the saddle point ((p°), ie(p®) : k € K\ KZ(p%)) is unique and
that the gradients Vfi(z), i € I, Vg*(z), k € K\ K=(p°) are continuous at z(p°).
Then for every path p € S(p°), p — p° for which the limit

20N (0
CD — Ill'ﬂ Z(p) zgp )
p€S(p°), p—p° |lp = p°|

exisis, 1t follows

b P —elh) o
p€S(p°), p—p° ||p — PO

L5 (2(p"), i(p")) - ¢° (1)

The formula (1) is used for constructing the path p € S(p°) from p° along which
satisfactory improvements of objectives from I will be achieved. Let m(p°) C S(p9),
p — p° be an acceptable path thus found. The user is asked to choose on the path

m(p°) a vector p' = (p}), j € R, with small positive components that represent
amounts of relaxation for objectives from R.

Further improvement of (¢(p!) is possible along some path from p! through the
region of stability S(p*) = {p : p; > p},J € R}.

Consider model P.(p) at p = p'. Then

JZ(P) =12, FI(p)={z:f(2) = f(z"),ie JI (")
Z7(p')={z:9°(2) =0,k € K (p')}.

Restrictive Lagrange function of P.(p) at p' is

Li(z,vip) = L fi(2)+ Eﬂg[f’ z) = f1(z") — py]

1€/

+ 3, V-'U )=+ T w2
ieI\I= ke K\K=(p")
Since I'S = {z : f'(2) = fr(z*), z € J=(p);9%(z) = 0,k € KZ(p')} does not
depend on p, it is continuous at p' over S(p'). Marginal value formula at p! is
obtained by application of Theorem 2.
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COROLLARY 2. Consider a conver model P.(p) with differentiable funclions af g
Suppose that the saddle point (:(p'), u(p') : k€ RU(I\IZ)U(K\ K=(p'))) 1s
unique and that gradients VfI(z). j€ J, Vg*(z), k € K\ KZ(p') are conlmuous
at 2(p'). Then for every path p € S(p'), p — p' for which the hmuis

1 - —_z 1
birm o P1 Add Cl — e *(p) EP )
peS(e'), p—2' |lp — | pes(e ). p—ot  |lp— Pl

Il

erist, the marginal value 1s

, P(p) —#(P") _ o < /
L R e A C R

+ V., L5 (z(p"), 0(p')ipt) - € (2)

The other term, related to the derivative of the optimal solution, is equal to
zero under the assumption that Slater’s condition holds for the model P.(p) at
p = p' (see [16]) or for unconstrained multi-objective program, i.e. when K = @.

In the later case
JZ(p) =I5 (p') and FI(p)={z:f'(2) = fi("),i € JZ(p")}
for every p € S(p'). Since
VLY (2(p'), 0(p')ip") = [-05(p"), JER

marginal value formula (2) reduces to the previously known form:

- &(p) — p(p') L
! = V,LE(3p1), 9(p): oY) - 1!
Pes(p}Tp—.pl e — P! oL (2(p ), 0(p");p)

==3 5(p') 1. (3)

JER

4. EXAMPLE

The proposed method is illustrated by the program with five objectives:

min {f(z),..., f*(z)}

:ERS
where:
flHe)=2+23-2, fA)=(n1—-2"+(22-2)?-2, f2)=e"™ + =1,
FAi2)=(m=1) 42 -1, fS(2)==z2;—29+13+2.
Objective functions f/ :R* — R, j € j = {1,...,5} are faithfully convex.
INITIALIZATION. The initial point is y° = (1,1,0,2)T.
ITERATION h = |

Step 1. For y = % objective values vector is f(y) = (0,0,4,4,0)T and I =
{1,2,6}. Since J # J, the point y is not a Pareto-minimum. Then the umque
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optimal solution ' = (1,1,0,0)" of the program P, is a Pareto-minimum; set

st - 21
- @ 2—_— g

Step 2. The user has to classily objectives into two groups [/ and R on the basis
of f(z*) = (O,O,O.O,O)T. To help the user in this classification, sets I, I\ I are
calculated for different pairs (f, R) and results thus obtained constitute the Table 1.
In order to study influence of the relaxation of one objective on the others, all sets
R are taken to be singleton.

No. of the

pair (1, R) ! R Ic INIZ
1 (23,450 {1}  {3.4)  {2.5)
9 (1.3,4,5) {2} {1,345 @
3 (1,2.4,5) {3} {1,245 @
4 (1,2,3,5) {4} {12}  {3,5)
5 (1,2,3.4) {5} {1,2.3.4) @
Table 1.

It can be seen from the table that it is not possible to improve all remaining
objectives by relaxing only one. Assume that the user is willing to relax the first
objective and one is asked to assign the amount p; > 0 to be increased.

The solutions of P.(p) for different p are analysed. For every p = ph p; > 0
the optimal solution ib z2(p) = (V14 p1/2,/1+ p1/2,O,O)T. When p! = 50, then
E(pl) = (15, 15,0, 0) and corresponding f(z(p!)) = (0.42,-0.38,0,0,—-0.2). At

10 10°
P~ =3, z(pz)—- (2,2,0, 0)" and f(3(p?)) = (2.5,—1.5,0,0,—1).
The pl = - 1s chosen as the satisfactory relaxation level. The new reference

point ! z(pz) is a solution of P.(p) with p = p?. Set y = §'.

ITERATION h =2

Step 1. Here J; = J, so y is a Pareto-minimum. Set z* = y.

Step 2. The objective values vector f(z*) = (%, —%, 0,0, —l)T 1s offered to the user.
Suppose that one tries to improve f%(z*) = 0. As Table 1 shows, worsening of one
objective does not guarantee the improvement required. We are going to see if this
is possible to achieve by worsening two objectives. That is why index sets I= and
I'\ IZ are calculated for different sets R which consist of two elements.

According to Table 2, the best results are obtained with R = {1,3}. The
sensitivity analysis will be carried out to help the user in assigning relaxation levels
p1 > 0 and ps > 0. Consider model P.(p) for p = p° = (p = 0,p3 = 0).
Then 2(p°) = 2z = (3,3,0, O)T and V.3 .c; f1(2(p°)) = (-2,-2,-1,0). For
every p € S(p°) = {p = (p1,p3) : ;1 > 0,p3 > 0} optimal solution of P.(p)

is 2(p) = (V9/4+ p1/2,v/9/4 + p1/2,In(1 + p3), 0) Marginal value describes
changes of ¢(p) along different paths from p°® through the region S(p°).
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No. of the = =
pair (I, R) I k L INL
1 {3,4,5} {1,2} {3,4} {5}
2 {2,3,4} (1,5} {3,4} {2}
3 {1,3,4} {2,5} {3,4} {1}
4 {1,4,5} {2,3} {1,4,5} &
5 (1,2,5) (3,4} {1,2) (5)
6 {1,2,4} {3,5} {1,2} {4}
7 {1,2,3} {45} {1,2} {3}
8 {2,4,5} {1,3} %, {2,4,5}
9 {2,3,5) {1,4} %, {2,3.5}
10 (1,3,5) {24] @  {1,3.5}
Table 2.

On the pﬂ.th WI(PG) = {P € S(pﬂ) - P = pﬂ + &(d11d3)T1d13d3 > O,Q’ 2 0}1
1 (d11d116d3:0)T

¢ , so the marginal value calculated by formula (1) equals
MV = —£01 — 3 On the path m(p°) = {p € S(p°) : p = p° + (1, 13T, t > 0}
3 Wl + 3 ¥ L]

is (2 = %,1;’;-,0,0)"" and MV, = —2. If the path is 73(p°) = {p € S(p°) : p =
P+ (t3,t%)Y )t > 0}, then ¢3 = (0,0,1,0)T and MVz = —1.

The path x,(p°) is chosen as acceptable and the point p! on this path. For
p' = (p1 = 3, p3 = €!/4—1) from the path 7, (p°), with d; = 12, d3 = ¢!/4—1 and
a = 1, optimal solution is z(p!) = (%, 43, -},O)T and the corresponding Lagrange
multipliers are 01 (p') = 2, ia(p') = 0.5¢~1/4,

Different paths emanating from p' can be constructed through the region
S(p') = {p = (pr.p3) : pr > pl,ps > pi}. We will analyse marginal value on
three chosen paths. Along the path m1(p') = {p € S(p') : p = p* + a(d,, d3)T,

dy,d3)T
dy,dg > 0, > 0} we obtain {' = \(/:?!_j)?’ Marginal value for p € = (p'),
1 T d3

p — p', calculated by formula (3), is equal to

MVI — (—Edl m— 0.58_1/4d3) :

On the path m(p') = {p € S(p') : p = p* + (1,1H)T,1 > 0} is I? = (1,0)T, then
it follows MV, = —3/7. If the path has the form ma(p') = {p € S(p') : p =
A+ (t2,12)T,1 > 0}, then 1* = (0,1)T and M V3 = —0.5¢-1/4,

The point p* = (pf = §,p3 = ¢/2 = 1) from the path x,(p') is chosen as
satisfactory. The modified program P.(p), with p = p? is solved and results are
followed on Table 3.

The user chooses ', it = 2 as a new referential point. Set y = z'*.
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it 2y I9 23 24 F & f2 fﬁ f fﬁ
0 15 1.5 0. 0. 2.5 -1.5 0. 0. -1.
1 1.99999 2. 0.33333 0. 5.99999 -1.99999 0.39741 —0.555556 —1.66666

2 2.11666 1.87499 0.45833 0. 5.99589 —1.97076 0.58143 —0.70659 -—1.53333

Table 3.

ITERATION A =3

Step 1. For y = (2.11666, 1.87499,0.45833,0.)T objective values vector is f(y) =
(5.99589, —1.97076,0.58143, —0.70659, —1.53333)T and J7 = {3,4}. Since J; # J,
y is not a Pareto-minimum. A few iterations of solving P, by modified feasible

direction method are presented:

1 21 9 23 <4 Z,fEJ fj(.?:)

0 2.11666 1.87499 (0.45833 0. 2.36664

1 1.95744 2.03617 0.45833 0. 2.32024

2 2.03129 1.96037 0.45833 0. 2.31326

3 1.97435 2.01757 0.45833 0. 2.31089

4 2.00136 1.99087 0.45833 0. 2.31003
Table 4.

Optimal solution of P, is % = (1.99583, 1.99583,0.45833,0.)T. This solution
is a Pareto-minimum for the given problem, so z* = 23,

Step 2. The user is satisfied with all reached objective values

f(z*) = (5.96668, —1.99997,0.58143, ~0.70659, —1.53333) 7,

and 2* = 23 is the acceptable or the solution “for realization”.

In this example the author took the role of the user and he gave preference
information during the solution process.

5. CONCLUSION

The procedure-proposed in this paper is along the same line as STEM method.
The basic idea of STEM method — to improve some objectives by relaxing the oth-
ers — 1s used and further developed in many methods which appeared later on.
In comparison with some other procedures from this group, the user can try to
improve more than one objective function and the achievement of the required im-
provements in the convex case are checked without necessarily performing complete
optimization step.

The sensitivity analysis carried out by recently proposed marginal value for-
mula from input optimization is an important support to the user in assigning the
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relaxation levels. It should be noted that the lack of information from the sensit?v—
ity analysis is referred to in the literature as a disadvantage of the known interactive

methods.
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